Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 241: 157-69, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23531437

RESUMO

Elevated nerve growth factor (NGF) is believed to play a role in many types of pain. An NGF-blocking antibody (muMab 911) has been shown to reduce pain and hyperalgesia in pain models, suggesting a novel therapeutic approach for pain management. Since NGF also plays important roles in peripheral nervous system development and sensory nerve outgrowth, we asked whether anti-NGF antibodies would adversely impact peripheral nerve regeneration. Adult rats underwent a unilateral sciatic nerve crush to transect axons and were subcutaneously dosed weekly for 8weeks with muMab 911 or vehicle beginning 1day prior to injury. Plasma levels of muMab 911 were assessed from blood samples and foot print analysis was used to assess functional recovery. At 8-weeks post-nerve injury, sciatic nerves were prepared for light and electron microscopy. In a separate group, Fluro-Gold was injected subcutaneously at the ankle prior to perfusion, and counts and sizes of retrogradely labeled and unlabeled dorsal root ganglion neurons were obtained. There was no difference in the time course of gait recovery in antibody-treated and vehicle-treated animals. The number of myelinated and nonmyelinated axons was the same in the muMab 911-treated crushed nerves and intact nerves, consistent with observed complete recovery. Treatment with muMab 911 did however result in a small decrease in average cell body size on both the intact and injured sides. These results indicate that muMab 911 did not impair functional recovery or nerve regeneration after nerve injury in adult rats.


Assuntos
Anticorpos Monoclonais/farmacologia , Fator de Crescimento Neural/antagonistas & inibidores , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/fisiologia , Envelhecimento , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões
2.
Mol Cell Neurosci ; 18(6): 606-18, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11749037

RESUMO

Protein Zero (P0), the major structural protein in the peripheral nervous system (PNS) myelin, acts as a homotypic adhesion molecule and is thought to mediate compaction of adjacent wraps of myelin membrane. E-Cadherin, a calcium-dependent adhesion molecule, is also expressed in myelinating Schwann cells in the PNS and is involved in forming adherens junctions between adjacent loops of membrane at the paranode. To determine the relationship, if any, between P0-mediated and cadherin-mediated adhesion during myelination, we investigated the expression of E-cadherin and its binding partner, beta-catenin, in sciatic nerve of mice lacking P0 (P0(-/-)). We find that in P0(-/-) peripheral myelin neither E-cadherin nor beta-catenin are localized to paranodes, but are instead found in small puncta throughout the Schwann cell. In addition, only occasional, often rudimentary, adherens junctions are formed. Analysis of E-cadherin and beta-catenin expression during nerve development demonstrates that E-cadherin and beta-catenin are localized to the paranodal region after the onset of myelin compaction. Interestingly, axoglial junction formation is normal in P0(-/-) nerve. Taken together, these data demonstrate that P0 is necessary for the formation of adherens junctions but not axoglial junctions in myelinating Schwann cells.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais , Proteínas do Citoesqueleto/metabolismo , Proteína P0 da Mielina/deficiência , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Transativadores , Junções Aderentes/ultraestrutura , Envelhecimento/genética , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Caderinas/genética , Adesão Celular/genética , Comunicação Celular/genética , Proteínas do Citoesqueleto/genética , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteína P0 da Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Glicoproteína Associada a Mielina/metabolismo , Compressão Nervosa , Nervos Periféricos/ultraestrutura , RNA Mensageiro/metabolismo , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura , beta Catenina
3.
Cell Tissue Res ; 305(1): 53-66, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11512672

RESUMO

We have examined the localization of contactin-associated protein (Caspr), the Shaker-type potassium channels, Kv1.1 and Kv1.2, their associated beta subunit, Kvbeta2, and Caspr2 in the myelinated fibers of the CNS. Caspr is localized to the paranodal axonal membrane, and Kv1.1, Kv1.2, Kvbeta2 and Caspr2 to the juxtaparanodal membrane. In addition to the paranodal staining, an internodal strand of Caspr staining apposes the inner mesaxon of the myelin sheath. Unlike myelinated axons in the peripheral nervous system, there was no internodal strand of Kv1.1, Kv1.2, Kvbeta2, or Caspr2. Thus, the organization of the nodal, paranodal, and juxtaparanodal axonal membrane is similar in the central and peripheral nervous systems, but the lack of Kv1.1/Kv1.2/Kvbeta2/Caspr2 internodal strands indicates that the oligodendrocyte myelin sheaths lack a trans molecular interaction with axons, an interaction that is present in Schwann cell myelin sheaths.


Assuntos
Proteínas de Membrana , Fibras Nervosas Mielinizadas/ultraestrutura , Proteínas do Tecido Nervoso/análise , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/análise , Nós Neurofibrosos/química , Medula Espinal/citologia , Animais , Canal de Potássio Kv1.1 , Canal de Potássio Kv1.2 , Camundongos , Fibras Nervosas Mielinizadas/química , Oligodendroglia/química , Oligodendroglia/ultraestrutura , Ratos , Células de Schwann/química , Células de Schwann/ultraestrutura
4.
J Neurosci Res ; 65(2): 139-49, 2001 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-11438983

RESUMO

We examined the organization of the molecular components of the nodal region in spontaneously diabetic BB-Wistar rats. Frozen sections and teased fibers from the sciatic nerves were immunostained for nodal (voltage-gated Na(+) channels, ankyrin(G), and ezrin), paranodal (contactin, Caspr, and neurofascin 155 kDa), and juxtaparanodal (Caspr2, the Shaker-type K(+) channels Kv1.1 and Kv1.2, and their associated subunit Kvbeta2) proteins. All of these proteins were properly localized in myelinated fibers from rats that had been diabetic for 15-44 days, compared to age-matched, nondiabetic animals. These results demonstrate that the axonal membrane is not reorganized, so nodal reorganization is not likely to be the cause of nerve conduction slowing in this animal model of acute diabetes.


Assuntos
Axônios/metabolismo , Membrana Celular/metabolismo , Neuropatias Diabéticas/metabolismo , Proteínas de Membrana , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Nós Neurofibrosos/metabolismo , Nervo Isquiático/metabolismo , Animais , Anquirinas/metabolismo , Axônios/patologia , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/patologia , Contactinas , Proteínas do Citoesqueleto , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/fisiopatologia , Imuno-Histoquímica , Canal de Potássio Kv1.1 , Canal de Potássio Kv1.2 , Fatores de Crescimento Neural/metabolismo , Fosfoproteínas/metabolismo , Canais de Potássio/metabolismo , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Ratos , Ratos Endogâmicos BB/anatomia & histologia , Ratos Endogâmicos BB/metabolismo , Receptores de Superfície Celular/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia
5.
J Neurosci Res ; 65(2): 150-64, 2001 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-11438984

RESUMO

Ezrin, radixin, and moesin (ERM proteins), as well as the neurofibromatosis 2 (NF2) tumor suppressor merlin/schwannomin, all belong to the protein 4.1 family, yet only merlin is a tumor suppressor in Schwann cells. To gain insight into the possible functions of ERM proteins in Schwann cells, we examined their localization in peripheral nerve, because we have previously shown that merlin is found in paranodes and in Schmidt-Lanterman incisures. All three ERM proteins were highly expressed in the microvilli of myelinating Schwann cells that surround the nodal axolemma as well as in incisures and cytoplasmic puncta in the vicinity of the node. In all of these locations, ERM proteins were colocalized with actin filaments. In contrast, ERM proteins did not surround nodes in the CNS. The colocalization of ERM proteins with actin indicates that they have functions different from those of merlin in myelinating Schwann cells.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Bainha de Mielina/metabolismo , Fosfoproteínas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Células de Schwann/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Anquirinas/metabolismo , Especificidade de Anticorpos/fisiologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/ultraestrutura , Imuno-Histoquímica , Canal de Potássio Kv1.1 , Canal de Potássio Kv1.2 , Microscopia Eletrônica , Microvilosidades/ultraestrutura , Glicoproteína Associada a Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Nervos Periféricos/metabolismo , Nervos Periféricos/ultraestrutura , Canais de Potássio/metabolismo , RNA Mensageiro/metabolismo , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/ultraestrutura , Ratos , Células de Schwann/ultraestrutura , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura , Canais de Sódio/metabolismo
6.
Histochem Cell Biol ; 113(1): 1-18, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10664064

RESUMO

Schwann cells and oligodendrocytes make the myelin sheaths of the PNS and CNS, respectively. Their myelin sheaths are structurally similar, consisting of multiple layers of specialized cell membrane that spiral around axons, but there are several differences. (1) CNS myelin has a "radial component" composed of a tight junction protein, claudin-11/oligodendrocyte-specific protein. (2) Schwann cells have a basal lamina and microvilli. (3) Although both CNS and PNS myelin sheaths have incisures, those in the CNS lack the structural as well as the molecular components of "reflexive" adherens junctions and gap junctions. In spite of their structural differences, the axonal membranes of the PNS and CNS are similarly organized. The nodal axolemma contains high concentrations of voltage-dependent sodium channels that are linked to the axonal cytoskeleton by ankyrin(G). The paranodal membrane contains Caspr/paranodin, which may participate in the formation of axoglial junctions. The juxtaparanodal axonal membrane contains the potassium channels Kv1.1 and Kv1.2, their associated beta2 subunit, as well as Caspr2, which is closely related to Caspr. The myelin sheath probably organizes these axonal membrane-related proteins via trans interactions.


Assuntos
Fibras Nervosas Mielinizadas/ultraestrutura , Animais , Axônios/ultraestrutura , Sistema Nervoso Central/ultraestrutura , Humanos , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/metabolismo , Sistema Nervoso Periférico/ultraestrutura
7.
J Comp Neurol ; 406(4): 461-75, 1999 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-10205023

RESUMO

Among higher metazoans, echinoderms exhibit the most impressive capacity for regeneration. Holothurians, or sea cucumbers, respond to adverse stimuli by autotomizing and ejecting their visceral organs, which are then regenerated. Neuronal fibers and cell bodies are present within the viscera, but previous regeneration studies have not accounted for the nervous component. We used light microscopic immunocytochemistry and ultrastructural studies to describe the regeneration of the enteric nervous system in the sea cucumber Holothuria glaberrima. This study provides evidence that the enteric nervous system of this echinoderm regenerates after evisceration and that in 3-5 weeks the regenerated system is virtually identical to that of noneviscerated animals. The regeneration of the enteric nervous system occurs parallel to the regeneration of other organ components. Nerve fibers and cells are observed within the mesenterial thickenings that give rise to the new intestine and within the internal connective tissue prior to lumen formation. We also used bromodeoxyuridine incorporation to show that proliferation of the neuronal population occurs in the regenerating intestine. The regeneration of the nervous system commands high interest because members of the closely related phylum Chordata either lack or have a very limited capacity to regenerate their nervous system. Thus, holothurians provide a model system to study enteric nervous system regeneration in deuterostomes.


Assuntos
Cordados não Vertebrados/fisiologia , Pepinos-do-Mar/fisiologia , Animais , Divisão Celular/fisiologia , Cordados não Vertebrados/anatomia & histologia , Sistema Nervoso Entérico/fisiologia , Sistema Nervoso Entérico/ultraestrutura , Imuno-Histoquímica , Intestinos/inervação , Intestinos/fisiologia , Microscopia Eletrônica , Regeneração Nervosa , Pepinos-do-Mar/anatomia & histologia , Especificidade da Espécie
8.
J Neurocytol ; 28(4-5): 333-47, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10739575

RESUMO

We examined the localization of Caspr and the K(+) channels Kv1.1 and Kv1.2, all of which are intrinsic membrane proteins of myelinated axons in the PNS. Caspr is localized to the paranode; Kv1. 1, Kv1.2 and their beta2 subunit are localized to the juxtaparanode. Throughout the internodal region, a strand of Caspr staining is flanked by a double strand of Kv1.1/Kv1.2/Kvbeta2 staining. This tripartite strand apposes the inner mesaxon of the myelin sheath, and forms a circumferential ring that apposes the innermost aspect of Schmidt-Lanterman incisures. The localization of Caspr and Kv1.2 are not disrupted in mice with null mutations of the myelin associated glycoprotein, connexin32, or Kv1.1 genes. At all of these locations, Caspr and Kv1.1/Kv1.2/Kvbeta2 define distinct but interrelated domains of the axonal membrane that appear to be organized by the myelin sheath.


Assuntos
Moléculas de Adesão Celular Neuronais , Bainha de Mielina/fisiologia , Fibras Nervosas/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/análise , Receptores de Superfície Celular/análise , Células de Schwann/fisiologia , Animais , Comunicação Celular/fisiologia , Conexinas/genética , Expressão Gênica , Canal de Potássio Kv1.1 , Canal de Potássio Kv1.2 , Camundongos , Camundongos Knockout , Microscopia Confocal , Glicoproteína Associada a Mielina/genética , Neurônios/química , Neurônios/ultraestrutura , Canais de Potássio/genética , Nós Neurofibrosos , Ratos , Células de Schwann/citologia , Nervo Isquiático/química , Nervo Isquiático/citologia , Proteína beta-1 de Junções Comunicantes
9.
J Neurosci ; 18(19): 7891-902, 1998 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9742157

RESUMO

Tst-1/SCIP/Oct-6, a POU domain transcription factor, is transiently expressed by developing Schwann cells and is required for their normal development into a myelinating phenotype. In tst-1/scip/oct-6-null sciatic nerves, Schwann cells are transiently arrested at the "promyelinating" stage, when they have a one-to-one relationship with an axon but before they have elaborated a myelin sheath. To determine when Schwann cells express Tst-1/SCIP/Oct-6, we examined beta-galactosidase (beta-gal) expression in heterozygous tst-1/scip/oct-6 mice, in which one copy of the tst-1/scip/oct-6 gene has been replaced with the LacZ gene. beta-Gal expression from the LacZ gene seems to parallel Tst-1/SCIP/Oct-6 expression from the endogenous tst-1/scip/oct-6 gene in developing and regenerating sciatic nerves. Furthermore, electron microscopic examination of 5bromo-4-chloro-3-indolyl-beta-D-galactopyranoside- (X-gal) and halogenated indolyl-beta-D-galactoside- (Bluo-gal) stained nerves showed that promyelinating Schwann cells express the highest levels of beta-gal, both in developing and in regenerating nerves. Thus, the expression of beta-gal, a surrogate marker of Tst-1/SCIP/Oct-6, peaks at the same stage of Schwann cell development at which development is arrested in tst-1/scip/oct-6-null mice, indicating that Tst-1/SCIP/Oct-6 has a critical role in promyelinating Schwann cells.


Assuntos
Bainha de Mielina/fisiologia , Proteínas do Tecido Nervoso/genética , Células de Schwann/citologia , Fatores de Transcrição/genética , Fatores Etários , Animais , Axotomia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Óperon Lac , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Bainha de Mielina/ultraestrutura , Fator 6 de Transcrição de Octâmero , Células de Schwann/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/citologia , Nervo Isquiático/cirurgia , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...